时间:2024-07-05

近日,博腾的结晶团队与基因泰克在《Pharmaceutical Research》期刊上共同发表了一篇题为《新药化合物中管道水合物的相变》的论文。该期刊是美国药剂科学家协会的官方出版物, 重点专注发布医学-化学综合领域的新研究成果。



多晶型是制药行业在药物发现和开发阶段的关键研究内容之一。同时,通过形成水合物改变药物分子的晶体结构,可以在不增加毒性风险的情况下改善其物理化学性质。然而,水合物中的水合程度对其理化性能有显著影响,如结晶度、引湿性、溶解性、稳定性、可加工性和溶出速率。因此,筛选药物分子的不同水合物也极其重要,并尽可能对水合物进行结构鉴定,以了解水合物的形成机制和脱水动力学,从而评估在药物生产过程中的潜在风险。

本文章研究了一个新药物化合物的三种管道水合物的不同相变行为,其中两种管道水合物的单晶结构得到了确认(图1)。研究发现,水合物1在无水丙酮和无水四氢呋喃中会转化为水合物2,这表明水合物2在低水活度下更稳定,当水活度继续增加时,水合物2可以进一步转化为水合物3。在有水存在的条件下,水合物2也会转化为水合物3。后续实验证实,水合物2在高水活度的溶剂体系(如丙酮/水)中会转化为水合物3。此外,从水合物1和无水晶型开始,在丙酮/水中也能实现向水合物3的转变。值得注意的是,水合物1在固体状态下甚至在室温室湿环境条件下也能转化为水合物3,说明水合物3在高水活度更稳定。
图1:管道水合物形貌

水合物2和3的脱水/再水合行为通过X射线衍射(XRD)进行了研究。当水合物2在室温室湿条件下存放5天,XPRD图谱未观察到显著变化,表明晶格没有膨胀或改变(图2)。这表明水合物2的晶胞结构非常刚性,可能不会在不改变晶格的情况下容纳额外的水。然而,当加热至120°C持续30分钟后,观察到水合物2的PXRD图谱发生变化,这表明脱水可能引起了晶体结构的转变。晶体结构的变化也通过单晶样品从室温加热至120°C后崩塌得到了验证。有趣的是,如图2所示,如果将脱水后的样品冷却至室温并放置30分钟,样品晶型(XRPD图谱)又回到了最开始的晶型2,这表明脱水/再水合过程是可逆的,并且在这个过程中涉及到一种新的晶型。

为了进一步理解晶格中这种可逆现象的机制,我们对晶体结构进行了分析,以研究水管道的存在及其与特定晶面的关联。在水合物2中,水分子沿着(202)和(-202)晶面排列,并与在17 °2Ɵ处观察到的峰值相关。这个衍射峰的强度在脱水后显著减少,同时出现了一组新的衍射峰值,比如在11.7、12.9、13.7、17.5和18.1 °2Ɵ处,证明得到了一个具有不同的晶胞的新晶体结构,而不是通常管道水合物出现的晶格收缩/膨胀现象。有趣的是,尽管脱水后产生了完全不同的XRPD图谱,但在常湿条件下(图2),脱水得到的新晶型会转变回初始的水合物。水合物2的这种脱水/再水合现象在作为管道水合物中是非常独特的,展示了该研究工作的新颖性。
图2:水合物2脱水/再水合行为图谱

与水合物2的脱水/再水合行为不同,水合物3在室温室湿条件下储存5天后,XRPD衍射信号向较低角度偏移(图3),说明了晶胞通过吸水后发生膨胀。当其加热至120°C并保持30分钟时,XRPD图谱衍射信号移回高角度,这表明水分子从晶格中移出。这很可能是单晶到单晶的直接脱水现象,因为从室温加热到120°C时,单晶的形貌保持不变。单晶整体形貌的保持表明这是一个局部规整脱水过程。如果脱水后的晶型冷却到室温下并保持24小时,XRPD衍射信号再次向低角度偏移,表明其再次吸收了水分。因此,脱水/再水合过程也是可逆的,并且在脱水后晶体结构得以维持,因为水合和脱水后的晶型的XRPD图谱相似。

类似于水合物2,在水合物3中,晶面(020)和(002)被识别为管道水的位置,并与在18.5° 2Ɵ观察到的衍射峰相关。当水合物3加热至120°C时,该峰向更高角度19.0° 2Ɵ偏移,明确表明晶格在-x和-y方向收缩。在(0-12)晶面上还观察到了另一个通道,与11.0° 2Ɵ处的峰相关,该峰在加热时没有出现偏移,表明该通道参与稳定整个晶格结构。在环境条件下,沿(020)和(002)晶面的通道允许水分子重新进入,可能会重新排列晶格以保持水合物3的晶体结构。

这种可逆行为通过动态水蒸气吸附仪(DVS)得到了进一步证实,DVS显示了可逆的吸附和解吸曲线,这表明水合物3中的水分子可以轻松转移,并随着温度和相对湿度的变化在晶格之间进出。